数据结构研究如何使用存储区解决问题
算法研究解决常见问题的方法数字之间的关系可以从两个完全不同的角度
进行描述逻辑关系(逻辑结构)描述数字之间和计算机 无关的关系物理关系(物理结构)描述存放数字的存储区 之间的关系逻辑结构分为如下几种
1.集合结构:所有数字可以看作一个整体2.线性结构:可以用一条有顺序的线把所有 数字连起来3.树状结构:所有数据都是从一个数据开始 向一个方向扩展出来的,任何数据 可以扩展出多个其他数据4.网状结构:任何两个数字之间可以有直接的 联系,所有数字之间的联系没有统一 方向物理结构有以下两种
1.顺序结构:所有存储区在内存里连续排列 数组和动态分配内存都是顺序结构的例子 顺序结构中每个存储区有一个编号, 可以根据编号直接找到对应的存储区 根据编号找到存储区的方法叫随机访问, 顺序结构支持随机访问能力 顺序结构中存储区个数很难调整,这 有可能造成内存的浪费 顺序结构不适合进行插入或删除操作/* 顺序结构演示*/#includevoid remove_num(int *p_num, int size, int num) { int num1 = 0; for (num1 = 0;num1 <= size - 1;num1++) { if (num < *(p_num + num1)) { *(p_num + num1 - 1) = *(p_num + num1); } else if (num1 && *(p_num + num1) < *(p_num + num1 - 1)) { *(p_num + num1 - 1) = *(p_num + num1); break; } }}void insert(int *p_num, int size, int num) { int tmp = num, num1 = 0, tmp1 = 0; for (num1 = 0;num1 <= size - 1;num1++) { if (tmp < *(p_num + num1)) { tmp1 = tmp; tmp = *(p_num + num1); *(p_num + num1) = tmp1; } else if (num1 && *(p_num + num1) < *(p_num + num1 - 1)) { tmp1 = tmp; tmp = *(p_num + num1); *(p_num + num1) = tmp1; break; } }}int main() { int arr[20] = { 2, 6, 12, 14, 17, 21, 23, 31, 35, 37}; int num = 0; insert(arr, 20, 27); for (num = 0;num <= 19;num++) { printf("%d ", arr[num]); } printf("\n"); remove_num(arr, 20, 14); for (num = 0;num <= 19;num++) { printf("%d ", arr[num]); } printf("\n"); return 0;}
2.链式物理结构:由多个无关的存储区构成,
任何两个存储区之间可以用指针连接链式物理结构中每个存储区叫做一个
结点 单向线性链式物理结构中任何两个结点 之间都有前后关系(每个结点里只 需要包含一个指针) 单向线性链式物理结构中最后一个结点 里的指针必须是空指针 链式物理结构不直接支持随机访问能力 可以在所有结点前增加一个无效头结点, 在所有结点后增加一个无效尾结点,这样 可以简化程序的编写/* 链式物理结构演示*/#includetypedef struct node { int num; struct node *p_next;} node;int main() { node node1 = { 1}, node2 = { 5}, node3 = { 12}, head = { 0}, tail = { 0}, node4 = { 7}; int cnt = 0; node *p_node = NULL; node1.p_next = &node2; node2.p_next = &node3; head.p_next = &node1; node3.p_next = &tail; for (p_node = &head;p_node != &tail;p_node = p_node->p_next) { node *p_first = p_node; node *p_mid = p_first->p_next; node *p_last = p_mid->p_next; if (p_mid != &tail) { printf("%d ", p_mid->num); } } printf("\n"); for (p_node = &head;p_node != &tail;p_node= p_node->p_next) { node *p_first = p_node; node *p_mid = p_first->p_next; node *p_last = p_mid->p_next; if (p_mid != &tail && cnt == 2) { printf("数字是%d\n", p_mid->num); } cnt++; } for (p_node = &head;p_node != &tail;p_node = p_node->p_next) { node *p_first = p_node; node *p_mid = p_first->p_next; node *p_last = p_mid->p_next; if (p_mid == &tail || p_mid->num > node4.num) { p_first->p_next = &node4; node4.p_next = p_mid; break; } } for (p_node = &head;p_node != &tail;p_node = p_node->p_next) { node *p_first = p_node; node *p_mid = p_first->p_next; node *p_last = p_mid->p_next; if (p_mid != &tail) { printf("%d ", p_mid->num); } } printf("\n"); for (p_node = &head;p_node != &tail;p_node = p_node->p_next) { node *p_first = p_node; node *p_mid = p_first->p_next; node *p_last = p_mid->p_next; if (p_mid != &tail && p_mid->num == 5) { p_first->p_next = p_last; break; } } for (p_node = &head;p_node != &tail;p_node = p_node->p_next) { node *p_first = p_node; node *p_mid = p_first->p_next; node *p_last = p_mid->p_next; if (p_mid != &tail) { printf("%d ", p_mid->num); } } printf("\n"); return 0;}
链式物理结构中每个有效结点都应该是动态
分配的链式物理结构中能容纳的数字数量可以灵活 变化数据结构由一组存储区和一组相关的函数构成
这些函数提供了对存储区的使用方法程序中的其他语句只能通过这组函数使用这些 存储区/* 动态分配链式物理结构演示*/#include#include typedef struct node { int num; struct node *p_next;} node;int main() { int num = 0; node head = { 0}, tail = { 0}, *p_tmp = NULL, *p_node = NULL; head.p_next = &tail; while (1) { printf("请输入一个数字:"); scanf("%d", &num); if (num < 0) { break; } p_tmp = (node *)malloc(sizeof(node)); if (!p_tmp) { continue; } p_tmp->num = num; p_tmp->p_next = NULL; for (p_node = &head;p_node != &tail;p_node = p_node->p_next) { node *p_first = p_node; node *p_mid = p_first->p_next; node *p_last = p_mid->p_next; if (p_mid == &tail) { p_first->p_next = p_tmp; p_tmp->p_next = p_mid; break; } } } printf("请输入要删除的数字:"); scanf("%d", &num); for (p_node = &head;p_node != &tail;p_node = p_node->p_next) { node *p_first = p_node; node *p_mid = p_first->p_next; node *p_last = p_mid->p_next; if (p_mid != &tail && p_mid->num == num) { p_first->p_next = p_last; free(p_mid); p_mid = NULL; break; } } for (p_node = &head;p_node != &tail;p_node = p_node->p_next) { node *p_first = p_node; node *p_mid = p_first->p_next; node *p_last = p_mid->p_next; if (p_mid != &tail) { printf("%d ", p_mid->num); } } printf("\n"); while (head.p_next != &tail) { node *p_first = &head; node *p_mid = p_first->p_next; node *p_last = p_mid->p_next; p_first->p_next = p_last; free(p_mid); p_mid = NULL; } return 0;}